\qquad
\qquad

Group Assessment 8: Graphing Polynomials (No Calculator)

Dividing Polynomials

Divide the following polynomials.

1. $\left(2 x^{4}-9 x^{3}+5 x^{2}+7 x+8\right) \div(x-3)$
2. $\left(x^{4}-6 x^{3}-5 x^{2}+63 x-9\right) \div(x+3)$

Is $\mathrm{d}(\mathrm{x})$ a factor of $\mathrm{f}(\mathrm{x})$? Why or why not?
3. $f(x)=x^{4}-5 x^{3}+15 x^{2}-7 x+9$
4. $\begin{aligned} & f(x)=5 x^{4}-x^{3}+6 x^{2}-10 \\ & d(x)=x-1\end{aligned}$
5. What does it mean for a polynomial to be a factor of another? Explain.

Zeros of Polynomials and Graphing Polynomials

Use the following function for numbers 6-8.

$$
f(x)=(x-2)^{3}(x-1)(x+4)^{2}
$$

6. Find the zeros and multiplicity.
7. Sketch a graph of the function $\mathrm{f}(\mathrm{x})$:

Zeros	Multiplicity	Intersection

$$
\begin{array}{ll}
\text { 7. Left End Behavior: } & \text { Right End Behavior: } \\
x \rightarrow-\infty, y \rightarrow & x \rightarrow \infty, y \rightarrow
\end{array}
$$

Use the following function for numbers 9-12.
$f(x)=2 x^{4}-12 x^{3}-14 x^{2}$
9. Write $f(x)$ in factored form.
10. Find the zeros of $f(x)$ and the multiplicity.

Zeros	Multiplicity	Intersection

11. Left End Behavior:
$x \rightarrow-\infty, y \rightarrow$ \qquad $x \rightarrow \infty, y \rightarrow$ \qquad Right End Behavior:

ロ
12. Sketch a graph of the function $f(x)$:

13. Write a function in factored form for the graph to the right.
$f(x)=$

14. Write an equation for a polynomial function in factored form with the following requirements (use the graph if needed):

The graph must have negative end behavior
You must include at least one zero with each type of multiplicity
$f(x)=$

15. The graph of $f(x)$ is given, how would the graph change if there was another zero at $x=-5$?

