\qquad

Learning with Logarithms!

Place the following expressions on the number line. Use the space below the number line to explain how you knew where to place each expression.

1. A. $\log _{3} 3$
B. $\log _{3} 9$
C. $\log _{3} \frac{1}{3}$
D. $\log _{3} 1$
E. $\log _{3} \frac{1}{9}$

Explain: \qquad
2. A. $\log _{3} 81$
B. $\log _{10} 100$
C. $\log _{8} 8$
D. $\log _{5} 25$
E. $\log _{2} 32$

Explain: \qquad
3. A. $\log _{7} 7$
B. $\log _{9} 9$
C. $\log _{11} 1$
D. $\log _{10} 1$

Explain: \qquad
4. A. $\log _{2}\left(\frac{1}{4}\right)$
B. $\log _{10}\left(\frac{1}{1000}\right)$
C. $\log _{5}\left(\frac{1}{125}\right)$
D. $\log _{6}\left(\frac{1}{6}\right)$

Explain: \qquad

Is it possible for a logarithm to equal a negative number? What would it mean for the expression?

Is it possible for a logarithm to equal zero? Why or why not?
5. A. $\log _{4} 16$
B. $\log _{2} 16$
C. $\log _{8} 16$
D. $\log _{16} 16$

Explain: \qquad
6. A. $\log _{2} 5$
B. $\log _{5} 10$
C. $\log _{6} 1$
D. $\log _{5} 5$
E. $\log _{10} 5$

Explain: \qquad
7. A. $\log _{10} 50$
B. $\log _{10} 150$
C. $\log _{10} 1000$
D. $\log _{10} 500$

Explain: \qquad
8.
A. $\log _{3} 3^{2}$
B. $\log _{5} 5^{-2}$
C. $\log _{6} 6^{0}$
D. $\log _{4} 4^{-1}$
E. $\log _{2} 2^{3}$

Explain: \qquad

Does $\log _{x} 0$ have an answer? Why or why not?

