Starter: Give 2 (two) differences and 2 (two) similarities of a centimeter and an inch...

Talk with your table. Be ready to share a difference and a similarity.

6-2 Angles and Radians

Objectives:
6-2a: I can draw angles in radians.
6-2b: I can find co-terminal angles in degrees \& radians.
$6-2 \mathrm{c}$: I can find reference angles in radians.

Centimeters \& Inches
Both measurements
Both on a ruler

$$
1 \mathrm{~cm} \neq 1 \text { inch }
$$

Angles \& Radians... inches used in the USA cm used every where else.

Degrees
Degrees and radians are different types of measurements for angles.

$$
\text { I Radian } \neq 1 \text { degree }
$$

What are radians?
https://www.youtube.com/watch?v=FUrs9JWn_N4
you may go to these websites
(c) https://en.wikipedia.org/wiki/Radian\#mediaviewer/File:Circle_radians.gif to help you tod

So there is 6 and a little more Radians around a circle

is a radius. length of the radius and put it around the circle-how many will it tale
But in a half Circle there is 3 and a little bit more.
What $\#$ is 3 and a little bit?
How about $\pi \ldots$ is π Ruchians... So a half or 180°

Unit circle angles in radians and degrees

(1) So when we are looking for radians we can cut π into pieces.
(2) Then we can look at the 1st angle or 45° as $\frac{1}{4} \pi \theta$

$$
\frac{\pi}{4}
$$

(©) The $3^{\text {rd }}$ angle of 135° can be looked
(3) The $2^{\text {nd }}$ angle of 90° at as $\frac{3}{4} \pi$ a $\frac{3 \pi}{4}$ is $\frac{2}{4} \pi$ or $\frac{1}{2} \pi=\frac{\pi}{2}$ which we already
5) the $4^{\text {th }}$ angle of 180° found. is $\frac{4}{4} \pi a \pi$.
(9) We con tinue counting angles around the rest of the circle...

$$
225^{\circ}=\frac{5 \pi}{4}
$$

$$
\begin{aligned}
& 270^{\circ}=\frac{6 \pi}{4} \text { or } \frac{3 \pi}{2} \\
& 315^{\circ}=\frac{7 \pi}{4} \\
& 360^{\circ}=\frac{8 \pi}{4}=2 \pi
\end{aligned}
$$

1st find the angles
Let's try it again... in degrees... $\frac{180^{9}}{4 h e m e n o m} 30^{\circ}$
Unit circle angles in radians and degrees
our π is
 cut into 6 pieces so... 1 st angle of 30° is $\frac{1 \pi}{6}=\frac{\pi}{6}$
Ind angle of 60° is $\frac{2 \pi}{6}=\frac{\pi}{3}$ $3^{\text {red }}$ angle of 90° is $\frac{3 \pi}{6}=\frac{\pi}{2}$
14 th $^{\text {th }}$ angle of 120°
yon angle of 210°
is $\frac{9 \pi}{6}$
$8^{\text {th }}$ angle of 240° is $\frac{4 \pi}{6}=\frac{2 \pi}{3}$ $5^{\text {th }}$ angle of 150° is $\frac{5 \pi}{6}$
is $\frac{8 \pi}{6}=\frac{4 \pi}{3}$
th angle of 270° is

$$
\frac{9 \pi}{6}=\frac{3 \pi}{2}
$$

$6^{\text {th }}$ angle of 180° is

$$
\frac{6 \pi}{6}=\pi
$$

* Can you find the Radians for 300° and 330° ?

Unit circle angles in radians and degrees (full)

This is called the unit circle. Notice all the pieces are not equal. So you can not just count pieces. You must split the larger pieces to make even pieces.
Once all the pieces are split equally then you can split π in to 12 prices... and find the radians.
Go ahead and find the angles in degrees st then find the radians. I started the first 2 angle for you.

* You may also notice the unit circle is our lIst circle ε our 2^{n} circle combined. you can check if you did it correctly by looking at the 1 st 2 circles.

