#### Simplify: 1.) $3x^{0}y^{3} \cdot 3x^{2}y^{2}$ $3 \cdot 3 \cdot x^{\circ} \cdot x^{2} \cdot y^{3} \cdot y^{2}$ 7Zero exponent renke =1 $9 \cdot 1 \cdot x^{2} \cdot y^{3t^{2}}$ $9 \times 1^{2}y^{5}$ $3 \cdot 3 \cdot x^{5} \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{3} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{2} \cdot y^{2} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{2} \cdot y^{2} \cdot y^{2} \cdot y^{2}$ $5 \cdot 3 \cdot x^{2} \cdot y^{2} \cdot$

#### Housekeeping:

- Homework will be scored on accuracy of the assignment.
  - > You will be allowed to rework missed problems to earn full credit.
- Homework will be due the next class period, after it is assigned.
  - > If you turn it in after the due date, you can only earn up to half credit.
- Incentives
  - > Turn in homework on due date-earn a raffle ticket
  - > Complete homework during homework time in class-Bubble Wrap

#### **4-2 Exponential Equations**

4-2a: I can use exponential formulas to model and solve situations of growth and decay.

# **EXPONENTIAL FUNCTION** $f(x) = a(b)^{x} - Exponent$ Initial Value (y-intercept) (Multiplier) Q - initial Value, y-intercept on also what you start with b-base multiplier, rate X - Cyponent

Graph the following functions on a calculator and sketch.



What did you notice about the graphs and their equations?

They are a reflection over the y-axis.  $f(x) = \partial^{x}$  is increasing  $f(x) = (\frac{1}{2})^{x}$  is decreasing When b>1, the function represents exponential growth When 0<b<1, the function represents exponential decay Exponential Growth and Decay (1+r) = growth $f(t) = a(1 \pm r)^{t} (1-r) = decay$ 

f(t) = value of the function after time (t)

- a = initial value
- r = interest rate (written in decimal form)
- t = time (in years unless otherwise stated)

John researches a baseball card and find that it is currently worth \$3.25. However, it is supposed to increase in value 11% per year.  $f(t) = a(1 \pm r)^{t}$ 

a) Write an exponential equation to represent this situation

b) How much will the card be worth in 10 years?

 $f(t) = 3.25(1+.1)^{10} = #9.23$ 

 $f(t) = 3.25(1+.1)^{t} = 3.25(1.1)^{t}$ 

ros enter 3 times. The number of years in which it will take for the curd to be worth \$26 is the X-value on the Calentur. X=19.92 So it will take approximately 20 years.

On federal income tax returns, self employed people can depreciate the value of business equipment. Suppose a computer valued at \$2765 depreciates at a rate of 30% per year.  $f(t) = a(1 \pm r)^t$ 

a) Write an exponential equation to model this situation

 $f(t) = 2765(1-.3)^{t} = 2765(.7)^{t}$ 

b) How much will this computer be worth in 5 years?

 $f(t) = 2765(1-3)^{5} = 464.71$ 

c) Use your graphing calculator to determine in how many years will the computer be worth \$350.

350= 2765(1)=  $y_1 = 350$   $y_2 = 2765 (.7)^{t}$ press graph, if the graphs don't show up adjust the window (X max and Y max values). Press 200 trace 15 enter enter enter! the computer will be worth \$350 in approximately 5.79 years on rounded to le years.

 $f(t) = \alpha(1+r)^{t}$ 

Because

The population of Orem in 1950 was 4,000 and was increasing at a rate of 2.6% per year.

a) Predict the population of Orem in 1975 and 2000.

 $f(25) = 4000 (1+.026)^{25}$  $f(25) \approx 7599 \quad f(50) = /4, 435$ 

b) Using your graphing calculator, predict when Orem's population will hit 200,000 people.

200,000 = 4000 (1.024)t

Orem's population will hit 200,000 in approximately 152 years.

 $f(t) = \alpha(1 \pm r)^{t}$ 

#### You try! 🙂

As a birthday present you received a pair of track shoes signed by Mr. Myrup that is valued at \$500 (ya know cause he's so awesome). Over time the value increases at a rate 5.5% per year.

a) Write an exponential equation to represent the situation.

 $f(t) = 500(1+.055)^{t}$ b) How much will the shoes be worth after 7 years? f(7)= 500 (1+.055) #727.34 c) How long until they are worth \$1000? Use graphing Calculator Press Y=  $y_{1} = enter 1000$  $y_{2} = enter 500(1.055)^{x}$ Press [graph] - if you can't see the graphs- Press [Window] and change

the XMax to 50, and YMax to 1500. Press Graph - To find the intersection Press 2nd - Trace - 5 - To find X -Press 2nd - Trace - 5 - To find X -Press Enter 3 times. X= 12.94 on ~13 years. Press Graph Press a

**Compound Interest Formula** 

$$\underline{A(t)} = \underline{P}\left(1 + \frac{r}{n}\right)^{nt}$$

- A(t) is the value after time (t)
- P is the principal
- r is the annual interest rate
- *n* is the number of compounding periods per year
- *t* is the time in years

Write an equation then find the final amount for each investment.

a. \$1000 at 8% compounded semiannually for 15 years

$$A(t) = 1000 \left(1 + \frac{.08}{2}\right)^{2(15)} A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$
  
= 324 340  
You Try!

b. \$1750 at 3.65% compounded daily for 10 years  $A(L) = (750(1 + \frac{0.365}{365})^{365})^{365}(10) = 2520.85^{365}$ Using a calculator, determine how many years it will take for the amount to reach \$4000

He amount to reach \$4000.  

$$4000 = 1750 \left(1 + \frac{0365}{365}\right)^{365t}$$
  
 $y_{i} = 4000 \quad y_{2} = 1750 \left(1 + \left(\frac{0365}{365}\right)^{365t}\right)^{365t}$   
 $graph - adjust windows if needed, then
find the intersection.
 $t \approx 22164$  on  $2346$$ 

A(t) = P(1+f)''

Write an equation then find the final amount for each investment.

a) An investment of \$1000 comounded monthly at a rate of 4.5%.  $A(t) = 1000(1 + \frac{.045}{.2})^{12(t)}$ b) How much money is there after 5 years?  $A(5) = 1000(1 + \frac{.045}{.2})^{12(t)} = \frac{9}{25} \frac{80}{.5}$ c) How long until the investment has tripled its value?  $3000 = 1000(1 + \frac{.045}{.2})^{12t}$ 

t≈ 24.46 or 25 years.

4.2B-

Investigate the growth of \$1 investment that earns 100% annual interest (r=1) over 1 year as the number of compounding periods, n, increases. Do this with a group/partner.

| Compounding schedule | n      | $1\left(1+\frac{1}{n}\right)^n$         | Value of A |
|----------------------|--------|-----------------------------------------|------------|
| annually             | 1      | 1(1++)                                  | S          |
| semiannually         | 2      | 1(1+=================================== | 2.25       |
| quarterly            | 4      | 1(1++)"                                 | 2.44       |
| monthly              | 12     | 1(1+==)                                 | 2.61       |
| daily                | 365    | 1(1+ 265)365                            | 2.7146     |
| hourly               | 8760   | 11+10000                                | 2.71813    |
| every minute         | 525600 | 525600                                  | 2.71828    |

What does the value of A approach?

2.71....

### The value e is called the <u>natural base</u> The exponential function with base e, $f(x)=e^x$ , is called the <u>natural exponential function</u>.

## $e \approx 2.71828182827$

what you need to know is  $e \approx 2.7$ 

Evaluate  $f(x) = e^x$  for a. x = 2  $e^2 = 7.399056$ b.  $x = \frac{1}{2}$   $e^{\frac{1}{2}} = 1.64972$ c. x = -1  $e^{-1} = .367879$  Many banks compound the interest on accounts daily or monthly. However, some banks compound interest continuously, or at every instant, by using the *continuous compounding formula*.

#### **Continuous Compounding Formula**

If *P* dollars are invested at an interest rate *r*, that is compounded continuously, then the amount, *A*, of the investment at time *t* is given by

 $A(t) = Pe^{rt}$ 

A person invests \$1550 in an account that earns 4% annual interest compounded continuously.

a. Write an equation to represent this situation

b. Using a calculator, find when the value of the investment reaches \$2000.

a)  $A(t) = 1500(e)^{.04t}$ b)  $2000 = 1500e^{.04t}$  $t \approx 7.19$  on Typeno

An investment of \$1000 earns an annual interest rate of 7.6%.

Compare the final amounts after 8 years for interest *compounded quarterly* and for interest *compounded continuously*.

 $f(t) = 1000(1+\frac{.076}{4})^{4.8} = 1826.31$ 

f(t)= 1000 e (074)8 = 1836.75

# Homework 4.2 1-2