Simplify:

$$
\begin{aligned}
& \begin{array}{l}
\text { 1.) } \\
3 x^{0} y^{3} \cdot 3 x^{2} y^{2} \\
3 \cdot 3 \cdot x^{0} \cdot x^{2} \cdot y^{3} \cdot y^{2} \\
\text { 2ero exponent Rute } \\
=1
\end{array} \\
& \begin{array}{l}
2 x^{-2} y^{-3} \\
9 \cdot 1 \cdot x^{2} \cdot y^{3+2} \\
9 x^{2} y^{5}
\end{array} \\
& \text { Simplify } \\
& 2
\end{aligned}
$$

Housekeeping:

- Homework will be scored on accuracy of the assignment.
> You will be allowed to rework missed problems to earn full credit.
- Homework will be due the next class period, after it is assigned.
> If you turn it in after the due date, you can only earn up to half credit.
- Incentives
$>$ Turn in homework on due date-earn a raffle ticket
> Complete homework during homework time in class-Bubble Wrap

4-2 Exponential Equations

4-2a: I can use exponential formulas to model and solve situations of growth and decay.

EXPONENTIAL FUNCTION

$$
f(x)=a(b)^{x}-\text { Exponent }
$$

a - initial Value, y-intercept on also what you start with
b-base multiplier, rate
X-exponent

Graph the following functions on a calculator and sketch.

b. $f(x)=\left(\frac{1}{2}\right)^{x}$

What did you notice about the graphs and their equations?
They are a reflection over the y-axis.
$f(x)=2^{x}$ is increasing $f(x)=\left(\frac{1}{2}\right)^{x}$ is decreasing When $b>1$, the function represents exponential growth When $0<b<1$, the function represents exponential decoy

Exponential Growth and Decay

$$
\begin{aligned}
& \text { Exponential Growth and Decay }(1+\lambda)=\text { grow the } \\
& f(t)=a(1 \pm r)^{t}(1-\lambda)=\text { decay }
\end{aligned}
$$

$f(t)=$ value of the function after time (t)
$\mathrm{a}=$ initial value
r = interest rate (written in decimal form)
$\mathrm{t}=$ time (in years unless otherwise stated)

John researches a baseball card and find that it is currently worth $\$ 3.25$. However, it is supposed to increase in value 11% per year. $f(t)=\underline{a}(1 \pm r)^{t}$
a) Write an exponential equation to represent this situation

$$
f(t)=3.25(1+.11)^{t}=3.25(1.11)^{t}
$$

b) How much will the card be worth in 10 years?

$$
f(t)=3.25(1+.11)^{00}=9.23
$$

c) Use your graphing calculator to determine in how many years will the card be worth $\$ 26$.

$$
26=3.25(1.11)^{t}
$$

In your graphing calculator -graph each side of the equation...

Press $y=$ - under $y_{1}=$ enter 26
under $y_{2}=$ enter $3.25(1.11)^{t}$
Hit graph. If both graphs do not show. Press
window and adjust the X-max and Y-max.
For this problem x-max shond be around 30.
For y-max it should be 26.
Next - press $2^{\text {nd }}$ trace 5 (for inter section) i then

The number of years in which it will table for the curl to be worth "26 is the x-value on the calentur. $x=19.92$ so it will take approximately 20 years.

On federal income tax returns, self employed people can depreciate the value of business equipment. Suppose a computer valued at $\$ 2765$ depreciates at a rate of 30% per year. $f(t)=\underline{a}(1 \pm r)^{t}$
a) Write an exponential equation to model this situation

$$
f(t)=2765(1-.3)^{t}=2765(.7)^{t}
$$

b) How much will this computer be worth in 5 years?

$$
f(t)=2765(1-.3)^{5}=1464.71
$$

c) Use your graphing calculator to determine in how many years will the computer be worth $\$ 350$.

$$
\begin{gathered}
350=2765(.7)^{t} \\
y_{1}=350 \quad y_{2}=2765(.7)^{t}
\end{gathered}
$$

press graph, if the graphs don't show up adjust the window (x max and ymax values). Press (2nd trace 15 enter enter) enter.
the computer will be worth a 350 in approximately 5.79 years on rounded to 6 years.

$$
f(t)=a(1+r)^{t}
$$

The population of Orem in 1950 was 4,000 and was increasing at a rate of 2.6% per year.
a) Predict the population of Orem in 1975 and 2000.

$$
\begin{aligned}
& f(25)=4000(1+.026)^{25} \\
& f(25) \approx 7599 \quad f(50)=14,435
\end{aligned}
$$

b) Using your graphing calculator, predict when Orem's population will hit 200,000 people.

$$
200,000=4000(1.026)^{t}
$$

Orem's population will hit 200,000 in approximately 152 years.

$$
f(t)=a(1 \pm r)^{t}
$$

You try! ©
As a birthday present you received a pair of track shoes signed by Mr. Myrup that is valued at $\$ 500$ (ya know cause he's so awesome). Over time the value increases at a rate 5.5% per year.
a) Write an exponential equation to represent the situation.

$$
f(t)=500(1+.055)^{t}
$$

b) How much will the shoes be worth after 7 years?

$$
f(7)=500(1+.055)^{7}=727.34
$$

c) How long until they are worth $\$ 1000$?

Use graphing calculator Press $y=$

$$
\begin{aligned}
& y_{1}=\text { enter } 1000 \\
& y_{2}=\text { enter } 500(1.055)^{x}
\end{aligned}
$$

Press graph - if you cart see the aranhs-Press (Window and change
the X Max to 50 , and Y max to 1500 . Press graph - To find the intersection Press end -Trace -5 - To find x Press Enter 3 times. $X=12.94$ $a \approx 13$ years.
Compound Interest Formula

$$
\underline{A(t)}=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A(t)$ is the value after time (t)
P is the principal
r is the annual interest rate
n is the number of compounding periods per year t is the time in years

Write an equation then find the final amount for each investment.
a. $\$ 1000$ at 8% compounded semiannually for 15 years

$$
\begin{aligned}
& A(t)=1000\left(1+\frac{00}{2}\right)^{(t-t)} A(t)=P\left(1+\frac{t}{n}\right)^{2} \\
& =\$ 3243.40
\end{aligned}
$$

You Try!
b. $\$ 1750$ at 3.65% compounded daily for 10 years

$$
A(t)=7750\left(1+\frac{035}{365}\right)^{255(10)}=2520.85
$$

Using a calculator, determine how many years it will take for the amount to reach $\$ 4000$.

$$
y_{1}=4000 \quad y_{2}=1750\left(1+\left(\frac{.0365}{365}\right)\right)^{365 t}
$$

graph - adjust window if needed, then
find the intersection.
$t=22.64$ or 23 years.

$$
A(t)=p\left(1+\frac{n}{n}\right)^{n t}
$$

Write an equation then find the final amount for each investment.
a) An investment of $\$ 1000$ comounded monthly at a rate

$$
A(t)=1000\left(1+\frac{.045}{12}\right)^{12(t)}
$$

b) How much money is there after 5 years?

$$
A(5)=1000\left(1+\frac{1045}{2(5)}\right)^{2(5)}=9 / 251.80
$$

c) How long until the investment has tripled its value?

$$
\begin{aligned}
& 3000=1000\left(1+\frac{.045}{12}\right)^{12 t} \\
& t \approx 24.46 \text { or } 25 \text { years. }
\end{aligned}
$$

Investigate the growth of \$1 investment that earns 100\% annual interest ($r=1$) over 1 year as the number of compounding periods, n , increases. Do this with a group/partner.

Compounding schedule	n	$1\left(1+\frac{1}{n}\right)^{n}$	Value of A
annually	1	$1\left(1+\frac{1}{1}\right)^{1}$	2
semiannually	2	$1\left(1+\frac{1}{2}\right)^{2}$	2.25
quarterly	4	$1\left(1+\frac{1}{4}\right)^{4}$	2.44
monthly	12	$1\left(1+\frac{1}{12}\right)^{12}$	2.61
daily	365	$1\left(1+\frac{1}{368}\right)^{365}$	2.7146
hourly	8760	$1\left(1+\frac{1}{8762}\right)^{1260}$	2.71813
every minute	525600	$\left(1+\frac{1}{525600}\right)^{525600}$	2.71828

What does the value of A approach?
$2.71 \ldots$

The value e is called the natural base

The exponential function with base $e, f(x)=e^{x}$, is called the natural exponential function.

$$
\begin{aligned}
& e \approx 2.71828182827 \\
& \text { what you need to know is } e \approx 2.7
\end{aligned}
$$

Evaluate $f(x)=e^{x}$ for
a. $x=2 \quad e^{2}=7.389056$
b. $x=1 / 2 \quad e^{1 / 2}=1.64872$
c. $x=-1 \quad e^{-1}=.36787$

Many banks compound the interest on accounts daily or monthly. However, some banks compound interest continuously, or at every instant, by using the continuous compounding formula.

Continuous Compounding Formula
If P dollars are invested at an interest rate r, that is compounded continuously, then the amount, A, of the investment at time t is given by

$$
A(t)=P e^{r t}
$$

A person invests $\$ 1550$ in an account that earns 4\% annual interest compounded continuously.
a. Write an equation to represent this situation
b. Using a calculator, find when the value of the investment reaches $\$ 2000$.

b.) $2000=1500 e^{.04 t}$

$$
t \approx 7.19 \text { or } 7 \text { yeas }
$$

An investment of $\$ 1000$ earns an annual interest rate of 7.6\%.

Compare the final amounts after 8 years for interest compounded quarterly and for interest compounded continuously.

$$
\begin{aligned}
& f(t)=1000\left(1+\frac{016}{4}\right)^{4.8}=1826.31 \\
& f(t)=1000 e^{(6074) 8}=1836.75
\end{aligned}
$$

Homework $4.2 \quad 1-2$

